基于多智能体社会模拟的大模型后训练数据合成:MATRIX-Gen助力自我进化

本研究提出了基于多智能体社会模拟的数据合成框架,构建了一个由 1000 多个 AI 智能体组成的模拟社会,可控地合成高质量的多样化数据,仅使用 0.2% 的数据,即可超越大模型研发领军团队 Meta AI,突显了其在数据合成中的优势。

原文标题:1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化

原文作者:机器之心

冷月清谈:

随着大语言模型(LLMs)的广泛应用,高质量数据的获取变得尤为关键。然而,获取此类数据往往伴随着高昂的成本和数据稀缺性。

为此,上海交通大学与牛津大学的研究团队提出了一项创新解决方案 —— 基于多智能体模拟的数据合成。团队提出了 MATRIX——AI 社会模拟器,构建了一个由 1000 多个 AI 智能体组成的模拟社会。在这个模拟社会中,每一个 AI 智能体代表了一个拥有独立身份和人格的数字人,这些 AI 智能体可以模拟出复杂的交流和互动模式,涵盖了从软件开发到商业活动的广泛场景。基于这些场景,团队进一步开发了 MATRIX-Gen 数据合成器,能够根据不同需求合成高度多样化且高质量的训练指令数据。

研究团队使用 Llama-3-8B-Instruct 驱动社会模拟,仅合成了 2 万条数据用于训练 Llama-3-8B-Base 模型。尽管数据量极少,训练后的模型在 AlpacaEval 2 和 Arena-Hard 基准测试中竟然大幅超越了 Llama-3-8B-Instruct 自身。这一结果不仅证明了 MATRIX-Gen 合成数据的高效性,也标志着模型在合成数据驱动下实现了自我进化。此外,在代码生成、多轮对话和安全性任务上,MATRIX-Gen 生成的专用数据同样表现优异,甚至超越了为这些特定任务设计的专用数据集。

本研究为通过合成数据提升大语言模型性能提供了全新的解决方案,展示了 AI 模拟社会在数据合成中的巨大潜力,为未来大语言模型的后训练数据合成开辟了创新的路径。

怜星夜思:

1、MATRIX-Gen 合成数据在代码生成和安全输出任务中的表现是如何实现超越专用数据集的?
2、MATRIX-Gen 在后训练数据合成中展示了哪些优势?
3、MATRIX-Gen 在合成数据方面,与其他现有技术相比有何独特之处?

原文内容

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:[email protected][email protected]

本文作者来自于上海交通大学人工智能学院的Multi-Agent Governance & Intelligence Crew (MAGIC团队)和牛津大学。共同第一作者有唐铄、庞祥鹤、刘泽希和唐博瀚。指导老师包括上海交大的王延峰教授、陈思衡副教授,以及牛津大学的董晓文副教授。

随着大语言模型(LLMs)在处理复杂任务中的广泛应用,高质量数据的获取变得尤为关键。为了确保模型能够准确理解并执行用户指令,模型必须依赖大量真实且多样化的数据进行后训练。然而,获取此类数据往往伴随着高昂的成本和数据稀缺性。因此,如何有效生成能够反映现实需求的高质量合成数据,成为了当前亟需解决的核心挑战。

那么,真实数据的需求是如何产生的?设想一位程序员在进行机器学习模型的开发与调优时,他会提出问题:「如何调整超参数以提高模型预测准确率?」 这种指令并非凭空而来,而是源于他所处的具体工作情境 —— 数据分析和模型优化。同样,用户在日常生活中的指令无论是编程任务、医疗诊断还是商业决策,往往与他们所面临的具体场景密切相关。要生成能够真实反映用户需求的合成数据,必须从这些实际情境中出发,模拟出与用户需求相匹配的场景。

基于这一理念,上海交通大学与牛津大学的研究团队提出了一项创新方案 —— 基于多智能体模拟的数据合成。团队提出了 MATRIX——AI 社会模拟器,构建了一个由 1000 多个 AI 智能体组成的模拟社会。在这个模拟社会中,每一个 AI 智能体代表了一个拥有独立身份和人格的数字人,这些 AI 智能体可以模拟出复杂的交流和互动模式,涵盖了从软件开发到商业活动的广泛场景。基于这些场景,团队进一步开发了 MATRIX-Gen 数据合成器,能够根据不同需求合成高度多样化且高质量的训练指令数据。


  • 论文链接:https://arxiv.org/pdf/2410.14251
  • 代码主页:https://github.com/ShuoTang123/MATRIX-Gen

为验证 MATRIX-Gen 合成数据的高质量,研究团队使用 Llama-3-8B-Instruct 驱动社会模拟,仅合成了 2 万条数据用于训练 Llama-3-8B-Base 模型。尽管数据量极少,训练后的模型在 AlpacaEval 2 和 Arena-Hard 基准测试中竟然大幅超越了 Llama-3-8B-Instruct 自身。这一结果不仅证明了 MATRIX-Gen 合成数据的高效性,也标志着模型在合成数据驱动下实现了自我进化。此外,在代码生成、多轮对话和安全性任务上,MATRIX-Gen 生成的专用数据同样表现优异,甚至超越了为这些特定任务设计的专用数据集。这项研究为通过合成数据提升大语言模型性能提供了全新的解决方案,展示了 AI 模拟社会在数据合成中的巨大潜力,为未来大语言模型的后训练数据合成开辟了创新的路径。

基于合成数据的后训练系统

本研究提出的后训练系统旨在利用基于多智能体模拟技术构建的 AI 模拟社会,合成高质量的训练数据,以提升预训练大语言模型的指令跟随能力。该系统的核心理念源于人类在现实场景中提问的方式 —— 人们基于自身需求提出多样且深入的问题。因此,本研究通过 AI 模拟社会合成人类社会中的场景,并利用这些场景引导 LLM 提出信息丰富、贴近现实的问题,从而产生高质量的训练数据。

如下图所示,该系统包含三个步骤:


1. 合成社会场景:利用多智能体模拟技术构建 AI 模拟社会,该社会中的每个场景由一组 AI 智能体及其对应的文本行动构成。为了确保社会场景的真实性和多样性,本研究设计了大规模人类社会模拟器 MATRIX,创建了一个包含各种 AI 智能体的互动环境。此模拟器充分发挥了 LLM 的角色扮演能力,使得 AI 智能体能够逼真地模拟人类行为,进行规划、观察和行动,进而生成丰富且高度真实的社会场景。

2. 合成训练数据:根据合成的社会场景,生成符合任务需求的后训练数据。本研究设计了场景驱动的指令生成器 MATRIX-Gen,模拟人类在日常生活中提出问题的过程,结合场景生成指令,确保更高的真实性;通过选择特定场景,能够合成符合任务需求的数据,具备可控性。这一步骤合成包括 SFT、DPO 以及各种专用数据集。

3. 模型微调:利用合成的 SFT 数据集,对预训练模型进行监督微调,以获得具备指令跟随能力的模型。随后,基于合成的偏好数据集,采用 DPO 进一步训练模型。

AI 社会模拟器 MATRIX

为了合成多样且丰富的场景,以助力数据的合成,本研究提出了人类社会模拟器 MATRIX。该模拟器的输入为若干 AI 智能体档案,输出为文本形式的场景。通过模拟人类的 AI 智能体和结构化的通信机制,MATRIX 实现了大规模的人类社会模拟,从而生成多样且真实的场景。


  • 模拟人类的智能体:每个 AI 智能体根据匿名化的真实人类档案进行初始化,并由 LLM 生成其个性和人生目标。这些目标进一步分解为可执行的步骤,形成 AI 智能体的行动计划。例如,一个医学教授的生活目标可能包括传播科学知识,而其计划则包括进行研究、发表论文、进行讲座和组织教育项目。这些步骤指导 AI 智能体未来的行动,确保它们朝着目标努力并展现出有目的的行为。当出现新观察时,AI 智能体会根据其记忆和个性做出反应;在没有新观察的情况下,它们则遵循既定计划追求目标。

  • 结构化的通信机制:受人类社会中同质性现象的启发,我们根据相似特征对 AI 智能体进行分组,以减少不必要的连接,从而提高模拟的可扩展性。在每组中,本研究引入一个集中调节器来管理组内和组间的沟通。这一设计促进了相似 AI 智能体之间的更多互动,同时仍允许长距离交流,丰富信息流并增强真实性。此外,这种结构化通信机制能够防止 AI 智能体接收到过多无关信息,确保模拟的有效性。

数据合成器 MATRIX-Gen

在合成了真实多样化的社会场景后,本研究设计了场景驱动的指令生成器 MATRIX-Gen,以满足特定任务需求并合成后训练数据。通过选择与用户需求相关的场景,MATRIX-Gen 能够生成符合人类意图的指令,从而确保合成指令的真实性和可控性。

如下图所示,在合成后训练数据的过程中,MATRIX-Gen 模拟了人类提问的过程。针对不同数据场景的需求(如通用任务或代码任务),MATRIX-Gen 结合每个 AI 智能体的个性和行动,将这些信息整合到指令生成提示中,模拟人类在日常生活中提出问题的方式。随后,基于上述指令生成提示,MATRIX-Gen 直接调用对齐的 LLM 生成合成指令及其对应的回答。


下图展示了一位 IT 经理在汽车数据分析场景下,提出「如何调整超参数以提高模型预测准确率」的例子:


通过这一方法,本研究能够合成三种类型的数据集,包括监督微调数据集 MATRIX-Gen-SFT、偏好调优数据集 MATRIX-Gen-DPO,以及特定领域的 SFT 数据。每种数据集的指令生成在复杂性和专业性上各具特点,确保满足不同场景下的需求。

性能表现

在实验中,本研究选择 Llama-3-8B-Instruct 作为数据合成模型,选择 Llama-3-8B 作为训练的模型,通过模型的训练效果评估 MATRIX-Gen 在通用任务、多轮对话、代码生成上的数据合成能力。


AlpacaEval 2 和 Arena-Hard 上的评估结果表明,通过多智能体模拟合成的 MATRIX-Gen-SFT 数据优于多个真实数据集以及合成数据集。


在 MATRIX-SFT 模型上 DPO 的训练结果表明,通过 MATRIX-Gen-DPO 训练的模型超越多种合成偏好数据训练的模型,以及 Llama-3-8B-Instruct。值得注意的是,MATRIX-Gen-DPO 训练后的模型总共仅使用了 2 万条合成数据,便实现了对 Llama-3-8B-Instruct 自身的超越,充分展示了其高质量和自我进化的能力。


在代码生成与安全输出的任务中,MATRIX-Gen 合成的数据集均超越了对应领域的专用数据集,显示出 MATRIX-Gen 在合成数据上的高可控性。


上图展示了 MATRIX-Gen-SFT 合成指令的可视化,显示出合成数据的多样性。

总结与展望

本研究提出了一种基于 AI 智能体社会模拟的后训练数据合成框架。依托 MATRIX 合成的 AI 模拟社会,MATRIX-Gen 能够可控地合成高质量的多样数据。在通用和专用任务中,仅使用 0.2% 的数据,即可获得优于大模型研发领军团队 Meta AI 所用数据集的模型训练效果,突显了 MATRIX-Gen 在数据合成中的优势。

本研究希望该数据合成框架能够帮助定量研究何种类型的数据更适合用于监督微调和偏好优化,深入探讨不同数据特性对模型性能的影响。此外,我们展望通过引入更强大的 AI 智能体,如具备工具调用能力的 AI 智能体,以及接入更丰富的环境,进一步合成更复杂的数据,从而提升大语言模型在复杂任务中的表现。

© THE END 
转载请联系本公众号获得授权
投稿或寻求报道:[email protected]

**效率:**MATRIX-Gen 合成数据量小,但效果显著。研究表明,仅使用 2 万条合成数据,便能够超越使用真实数据集训练的大模型。这种效率优势使得 MATRIX-Gen 成为大规模大语言模型后训练数据合成的理想选择。

MATRIX-Gen 具有很强的可控性和灵活性,它允许用户根据特定任务需求定制合成数据。例如,研究人员可以指定 AI 智能体的身份、行为模式和交互场景,从而生成针对特定领域或任务优化的训练数据集。这种可控性使得 MATRIX-Gen 成为后训练场景中的一个强大的工具。

**多样性:**MATRIX-Gen 模拟了 AI 智能体在不同情境下进行交互,从而产生了丰富且多样化的训练数据,涵盖了广泛的任务和领域。这种多样性有助于避免模型过拟合,并提升其泛化能力。

MATRIX-Gen 采用分布式计算架构,可以并行合成大量数据,显著提高了效率。这使得 MATRIX-Gen 能够在短时间内为大规模后训练任务生成充足的高质量数据。

**可控性:**MATRIX-Gen 允许用户根据特定任务需求选择和合成训练数据,从而实现数据合成过程的可控性。这使得研究人员能够针对特定的场景优化模型性能,并探索不同数据类型对模型表现的影响。

MATRIX-Gen 采用基于多智能体模拟的技术,这与其它的合成数据技术有本质上的不同。以往的合成数据技术主要依赖于统计建模或规则引擎,而 MATRIX-Gen 通过模拟真实的社会互动和行为,能够生成更加复杂、逼真和多样化的数据。

**通用性:**MATRIX-Gen 不仅适用于通用任务,还表现出在代码生成、多轮对话和安全性等专用任务中的优异性能。这种通用性使其成为广泛的后训练场景中有效的辅助工具。

MATRIX-Gen 真的是太好用了!它不仅能合成数据,还能生成针对特定任务的专用数据集,简直就是后训练数据合成的利器。

MATRIX-Gen 的 AI 模拟社会中的智能体具有不同的身份和个性,可以模拟不同用户的视角和偏好。这使得 MATRIX-Gen 能够生成多样化和全面的训练数据,涵盖各种编码风格和安全策略。这种多样性有助于模型泛化到不同的输入并生成更加健壮和通用的输出,从而超越专用数据集。笑cry

MATRIX-Gen 采用场景驱动的指令生成方法,可以根据特定任务需求合成数据。在代码生成任务中,它会模拟程序员面临的实际编码场景,生成贴近真实的代码指令。在安全输出任务中,它会模拟安全专家的决策过程,生成针对特定安全问题的响应指令。这些针对性强的训练数据有助于模型学习任务相关知识和技能,从而实现对专用数据集的超越。

与使用特定数据集或规则引擎的合成数据技术不同,MATRIX-Gen 可以不断更新和扩展其 AI 模拟社会,从而生成涵盖更多领域和任务的数据。这种可扩展性使得 MATRIX-Gen 可以适应不断变化的训练需求和研究方向。

MATRIX-Gen 的 AI 模拟社会涵盖了广泛的场景,包括代码开发和安全决策。通过模拟程序员和安全专家的行为,MATRIX-Gen 能够生成反映实际编码和安全实践的训练数据,从而提高模型在代码生成和安全输出任务中的性能,甚至超越为这些特定任务设计的专用数据集。

**高质量:**MATRIX-Gen 合成的数据在通用和专用任务中都展现了较高的质量,其合成的指令可控且真实,能够有效提升大语言模型的性能。

MATRIX-Gen 的 AI 模拟社会由 1000 多个独立且具有个性化的 AI 智能体组成,它们之间的互动为数据合成过程注入了丰富的上下文信息和多样性。这使得 MATRIX-Gen 能够生成能够反映真实世界中人类行为和决策的数据,提高了合成数据的质量和适用性。