面试中实习算法篇应该了解的知识

原文标题:这些年背过的面试题——实战算法篇

原文作者:阿里云开发者

冷月清谈:

文章讲解了面试中实习算法篇应该了解的知识,包括URL黑名单、词频统计、未出现的数、重复URL、中位数、短域名系统、海量评论入库、在线用户数、热门字符串、红包算法、手写快排、手写归并、手写堆排、手写单例、手写LRUcache、手写线程池、手写消费者生产者模式、手写阻塞队列、交替打印ABC、交替打印FooBar等内容,每项内容都讲解了原理和实现方法,帮助读者在面试中更好地应对相关问题。

怜星夜思:

1、请介绍一下URL黑名单的存储和判断方式。
2、如何设计一个短域名系统?
3、请阐述一下海量评论入库的读写策略。

原文内容

阿里妹导读


本文是技术人面试系列实战算法篇,面试中关于实战算法都需要了解哪些内容?一文带你详细了解,欢迎收藏!

1、URL黑名单(布隆过滤器)

100亿黑名单URL,每个64B,问这个黑名单要怎么存?判断一个URL是否在黑名单中
散列表:
如果把黑名单看成一个集合,将其存在hashmap中,貌似太大了,需要640G,明显不科学。
布隆过滤器:
它实际上是一个很长的二进制矢量和一系列随机映射函数。
可以用来判断一个元素是否在一个集合中。它的优势是只需要占用很小的内存空间以及有着高效的查询效率。对于布隆过滤器而言,它的本质是一个位数组:位数组就是数组的每个元素都只占用1 bit,并且每个元素只能是0或者1。
在数组中的每一位都是二进制位。布隆过滤器除了一个位数组,还有K个哈希函数。当一个元素加入布隆过滤器中的时候,会进行如下操作:
  • 使用K个哈希函数对元素值进行K次计算,得到K个哈希值
  • 根据得到的哈希值,在位数组中把对应下标的值置为1。

2、词频统计(分文件)

2GB内存在20亿整数中找到出现次数最多的数
通常做法是使用哈希表对出现的每一个数做词频统计,哈希表的key是某个整数,value记录整数出现的次数。本题的数据量是20亿,有可能一个数出现20亿次,则为了避免溢出,哈希表的key是32位(4B),value也是32位(4B),那么一条哈希表的记录就需要占用8B。
当哈希表记录数为2亿个时,需要16亿个字节数(8*2亿),需要至少1.6GB内存(16亿/2^30,1GB==2^30个字节==10亿)。则20亿个记录,至少需要16GB的内存,不符合题目要求。
解决办法是将20亿个数的大文件利用哈希函数分成16个小文件,根据哈希函数可以把20亿条数据均匀分布到16个文件上,同一种数不可能被哈希函数分到不同的小文件上,假设哈希函数够好。然后对每一个小文件用哈希函数来统计其中每种数出现的次数,这样我们就得到16个文件中出现次数最多的数,接着从16个数中选出次数最大的那个key即可。

3、未出现的数(bit数组)

40亿个非负整数中找到没有出现的数
对于原问题,如果使用哈希表来保存出现过的数,那么最坏情况下是40亿个数都不相同,那么哈希表则需要保存40亿条数据,一个32位整数需要4B,那么40亿*4B= 160亿个字节,一般大概10亿个字节的数据需要1G的空间,那么大概需要16G的空间,这不符合要求。
我们换一种方式,申请一个bit数组,数组大小为4294967295,大概为40亿bit,40亿/8=5亿字节,那么需要0.5G空间,bit数组的每个位置有两种状态0和1,那么怎么使用这个bit数组呢?呵呵,数组的长度刚好满足我们整数的个数范围,那么数组的每个下标值对应4294967295中的一个数,逐个遍历40亿个无符号数,例如,遇到20,则bitArray[20]=1;遇到666,则bitArray[666]=1,遍历完所有的数,将数组相应位置变为1。
40亿个非负整数中找到一个没有出现的数,内存限制10MB
10亿个字节的数据大概需要1GB空间处理,那么10MB内存换算过来就是可以处理1千万字节的数据,也就是8千万bit,对于40亿非负整数如果申请bit数组的话,40亿bit /0.8亿bit=50,那么这样最少也得分50块来处理,下面就以64块来进行分析解答吧。
总结一下进阶的解法:

1.根据10MB的内存限制,确定统计区间的大小,就是第二次遍历时的bitArr大小。

2.利用区间计数的方式,找到那个计数不足的区间,这个区间上肯定有没出现的数。
3.对这个区间上的数做bit map映射,再遍历bit map,找到一个没出现的数即可。
自己的想法
如果只是找一个数,可以高位模运算,写到64个不同的文件,然后在最小的文件中通过bitArray一次处理掉。
40亿个无符号整数,1GB内存,找到所有出现两次的数
对于原问题,可以用bit map的方式来表示数出现的情况。具体地说,是申请一个长度为4294967295×2的bit类型的数组bitArr,用2个位置表示一个数出现的词频,1B占用8个bit,所以长度为4294967295×2的bit类型的数组占用1GB空间。怎么使用这个bitArr数组呢?遍历这40亿个无符号数,如果初次遇到num,就把bitArr[num2+1]和bitArr[num2]设置为01,如果第二次遇到num,就把bitArr[num2+1]和bitArr[num2]设置为10,如果第三次遇到num,就把bitArr[num2+1]和bitArr[num2]设置为11。以后再遇到num,发现此时bitArr[num2+1]和bitArr[num2]已经被设置为11,就不再做任何设置。遍历完成后,再依次遍历bitArr,如果发现bitArr[i2+1]和bitArr[i2]设置为10,那么i就是出现了两次的数。

4、重复URL(分机器)

找到100亿个URL中重复的URL
原问题的解法使用解决大数据问题的一种常规方法:把大文件通过哈希函数分配到机器,或者通过哈希函数把大文件拆成小文件。一直进行这种划分,直到划分的结果满足资源限制的要求。首先,你要向面试官询问在资源上的限制有哪些,包括内存、计算时间等要求。在明确了限制要求之后,可以将每条URL通过哈希函数分配到若干机器或者拆分成若干小文件,这里的“若干”由具体的资源限制来计算出精确的数量。
例如,将100亿字节的大文件通过哈希函数分配到100台机器上,然后每一台机器分别统计分给自己的URL中是否有重复的URL,同时哈希函数的性质决定了同一条URL不可能分给不同的机器;或者在单机上将大文件通过哈希函数拆成1000个小文件,对每一个小文件再利用哈希表遍历,找出重复的URL;或者在分给机器或拆完文件之后,进行排序,排序过后再看是否有重复的URL出现。总之,牢记一点,很多大数据问题都离不开分流,要么是哈希函数把大文件的内容分配给不同的机器,要么是哈希函数把大文件拆成小文件,然后处理每一个小数量的集合。

5、TOPK搜索(小根堆)

海量搜索词汇,找到最热TOP100词汇的方法
最开始还是用哈希分流的思路来处理,把包含百亿数据量的词汇文件分流到不同的机器上,具体多少台机器由面试官规定或者由更多的限制来决定。对每一台机器来说,如果分到的数据量依然很大,比如,内存不够或其他问题,可以再用哈希函数把每台机器的分流文件拆成更小的文件处理。
处理每一个小文件的时候,哈希表统计每种词及其词频,哈希表记录建立完成后,再遍历哈希表,遍历哈希表的过程中使用大小为100的小根堆来选出每一个小文件的top100(整体未排序的top100)。每一个小文件都有自己词频的小根堆(整体未排序的top100),将小根堆里的词按照词频排序,就得到了每个小文件的排序后top100。然后把各个小文件排序后的top100进行外排序或者继续利用小根堆,就可以选出每台机器上的top100。不同机器之间的top100再进行外排序或者继续利用小根堆,最终求出整个百亿数据量中的top100。对于top K的问题,除哈希函数分流和用哈希表做词频统计之外,还经常用堆结构和外排序的手段进行处理。

6、中位数(单向二分查找)

10MB内存,找到100亿整数的中位数
①内存够:内存够还慌什么啊,直接把100亿个全部排序了,你用冒泡都可以...然后找到中间那个就可以了。但是你以为面试官会给你内存??
②内存不够:题目说是整数,我们认为是带符号的int,所以4字节,占32位。
假设100亿个数字保存在一个大文件中,依次读一部分文件到内存(不超过内存的限制),将每个数字用二进制表示,比较二进制的最高位(第32位,符号位,0是正,1是负),如果数字的最高位为0,则将这个数字写入file_0文件中;如果最高位为1,则将该数字写入file_1文件中。
从而将100亿个数字分成了两个文件,假设file_0文件中有60亿个数字,file_1文件中有40亿个数字。那么中位数就在file_0文件中,并且是file_0文件中所有数字排序之后的第10亿个数字。(file_1中的数都是负数,file_0中的数都是正数,也即这里一共只有40亿个负数,那么排序之后的第50亿个数一定位于file_0中)
现在,我们只需要处理file_0文件了(不需要再考虑file_1文件)。对于file_0文件,同样采取上面的措施处理:将file_0文件依次读一部分到内存(不超内存限制),将每个数字用二进制表示,比较二进制的次高位(第31位),如果数字的次高位为0,写入file_0_0文件中;如果次高位为1,写入file_0_1文件中。
现假设file_0_0文件中有30亿个数字,file_0_1中也有30亿个数字,则中位数就是:file_0_0文件中的数字从小到大排序之后的第10亿个数字。
抛弃file_0_1文件,继续对file_0_0文件根据次次高位(第30位)划分,假设此次划分的两个文件为:file_0_0_0中有5亿个数字,file_0_0_1中有25亿个数字,那么中位数就是file_0_0_1文件中的所有数字排序之后的 第5亿个数。
按照上述思路,直到划分的文件可直接加载进内存时,就可以直接对数字进行快速排序,找出中位数了。

7、短域名系统(缓存)

设计短域名系统,将长URL转化成短的URL.
(1)利用放号器,初始值为0,对于每一个短链接生成请求,都递增放号器的值,再将此值转换为62进制(a-zA-Z0-9),比如第一次请求时放号器的值为0,对应62进制为a,第二次请求时放号器的值为1,对应62进制为b,第10001次请求时放号器的值为10000,对应62进制为sBc。
(2)将短链接服务器域名与放号器的62进制值进行字符串连接,即为短链接的URL,比如:t.cn/sBc。
(3)重定向过程:生成短链接之后,需要存储短链接到长链接的映射关系,即sBc ->URL,浏览器访问短链接服务器时,根据URL Path取到原始的链接,然后进行302重定向。映射关系可使用K-V存储,比如Redis或Memcache。

8、海量评论入库(消息队列)

假设有这么一个场景,有一条新闻,新闻的评论量可能很大,如何设计评论的读和写
前端页面直接给用户展示、通过消息队列异步方式入库
读可以进行读写分离、同时热点评论定时加载到缓存

9、在线/并发用户数(Redis)

显示网站的用户在线数的解决思路
维护在线用户表
使用Redis统计
显示网站并发用户数
  1. 每当用户访问服务时,把该用户的ID写入ZSORT队列,权重为当前时间;
  2. 根据权重(即时间)计算一分钟内该机构的用户数Zrange;
  3. 删掉一分钟以上过期的用户Zrem;

10、热门字符串(前缀树)

假设目前有1000w个记录(这些查询串的重复度比较高,虽然总数是1000w,但如果除去重复后,则不超过300w个)。请统计最热门的10个查询串,要求使用的内存不能超过1G。(一个查询串的重复度越高,说明查询它的用户越多,也就越热门。)
HashMap法
虽然字符串总数比较多,但去重后不超过300w,因此,可以考虑把所有字符串及出现次数保存在一个HashMap中,所占用的空间为300w*(255+4)≈777M(其中,4 表示整数占用的4个字节)。由此可见,1G的内存空间完全够用。
思路如下
首先,遍历字符串,若不在map中,直接存入map,value记为1;若在map中,则把对应的value加1,这一步时间复杂度O(N)
接着遍历map,构建一个10个元素的小顶堆,若遍历到的字符串的出现次数大于堆顶字符串的出现次数,则进行替换,并将堆调整为小顶堆。
遍历结束后,堆中10个字符串就是出现次数最多的字符串。这一步时间复杂度O(Nlog10)
前缀树法
当这些字符串有大量相同前缀时,可以考虑使用前缀树来统计字符串出现的次数,树的结点保存字符串出现次数,0表示没有出现。
思路如下
在遍历字符串时,在前缀树中查找,如果找到,则把结点中保存的字符串次数加1,否则为这个字符串构建新结点,构建完成后把叶子结点中字符串的出现次数置为1。
最后依然使用小顶堆来对字符串的出现次数进行排序。

11、红包算法

线性切割法,一个区间切N-1刀。越早越多
二倍均值法,【0~剩余金额 / 剩余人数*2】中随机,相对均匀

12、手写快排

public class QuickSort {
public static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
/* 常规快排 */
public static void quickSort1(int[] arr, int L , int R) {
if (L > R)  return;
int M = partition(arr, L, R);
quickSort1(arr, L, M - 1);
quickSort1(arr, M + 1, R);
}
public static int partition(int[] arr, int L, int R) {
if (L > R) return -1;
if (L == R) return L;
int lessEqual = L - 1;
int index = L;
while (index < R) {
if (arr[index] <= arr[R])
swap(arr, index, ++lessEqual);
index++;
}
swap(arr, ++lessEqual, R);
return lessEqual;
}
/* 荷兰国旗 */
public static void quickSort2(int[] arr, int L, int R) {
if (L > R)  return;
int[] equalArea = netherlandsFlag(arr, L, R);
quickSort2(arr, L, equalArea[0] - 1);
quickSort2(arr, equalArea[1] + 1, R);
}
public static int[] netherlandsFlag(int[] arr, int L, int R) {
if (L > R) return new int[] { -1, -1 };
if (L == R) return new int[] { L, R };
int less = L - 1;
int more = R;
int index = L;
while (index < more) {
if (arr[index] == arr[R]) {
index++;
} else if (arr[index] < arr[R]) {
swap(arr, index++, ++less);
} else {
swap(arr, index, --more);
}
}
swap(arr, more, R);
return new int[] { less + 1, more };
}

// for test
public static void main(String args) {
int testTime = 1;
int maxSize = 10000000;
int maxValue = 100000;
boolean succeed = true;
long T1=0,T2=0;
for (int i = 0; i < testTime; i++) {
int arr1 = generateRandomArray(maxSize, maxValue);
int arr2 = copyArray(arr1);
int arr3 = copyArray(arr1);
// int arr1 = {9,8,7,6,5,4,3,2,1};
long t1 = System.currentTimeMillis();
quickSort1(arr1,0,arr1.length-1);
long t2 = System.currentTimeMillis();
quickSort2(arr2,0,arr2.length-1);
long t3 = System.currentTimeMillis();
T1 += (t2-t1);
T2 += (t3-t2);
if (!isEqual(arr1, arr2) || !isEqual(arr2, arr3)) {
succeed = false;
break;
}
}
System.out.println(T1+" "+T2);
// System.out.println(succeed ? “Nice!” : “Oops!”);
}

private static int generateRandomArray(int maxSize, int maxValue) {
int arr = new int[(int) ((maxSize + 1) * Math.random())];
for (int i = 0; i < arr.length; i++) {
arr[i] = (int) ((maxValue + 1) * Math.random())

  • (int) (maxValue * Math.random());
    }
    return arr;
    }
    private static int copyArray(int arr) {
    if (arr == null) return null;
    int res = new int[arr.length];
    for (int i = 0; i < arr.length; i++) {
    res[i] = arr[i];
    }
    return res;
    }
    private static boolean isEqual(int arr1, int arr2) {
    if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null))
    return false;
    if (arr1 == null && arr2 == null)
    return true;
    if (arr1.length != arr2.length)
    return false;
    for (int i = 0; i < arr1.length; i++)
    if (arr1[i] != arr2[i])
    return false;
    return true;
    }
    private static void printArray(int arr) {
    if (arr == null)
    return;
    for (int i = 0; i < arr.length; i++)
    System.out.print(arr[i] + " ");
    System.out.println();
    }
    }

13、手写归并

public static void merge(int[] arr, int L, int M, int R) {
int[] help = new int[R - L + 1];
int i = 0;
int p1 = L;
int p2 = M + 1;
while (p1 <= M && p2 <= R)
help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
while (p1 <= M)
help[i++] = arr[p1++];
while (p2 <= R)
help[i++] = arr[p2++];
for (i = 0; i < help.length; i++)
arr[L + i] = help[i];
}
public static void mergeSort(int[] arr, int L, int R) {
if (L == R)
return;
int mid = L + ((R - L) >> 1);
process(arr, L, mid);
process(arr, mid + 1, R);
merge(arr, L, mid, R);
}
public static void main(String[] args) {
int[] arr1 = {9,8,7,6,5,4,3,2,1};
mergeSort(arr, 0, arr.length - 1);
printArray(arr);
}

14、手写堆排

// 堆排序额外空间复杂度O(1)
public static void heapSort(int[] arr) {
if (arr == null || arr.length < 2)
return;
for (int i = arr.length - 1; i >= 0; i--)
heapify(arr, i, arr.length);
int heapSize = arr.length;
swap(arr, 0, --heapSize);
// O(N*logN)
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
// arr[index]刚来的数,往上
public static void heapInsert(int[] arr, int index) {
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
// arr[index]位置的数,能否往下移动
public static void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1; // 左孩子的下标
while (left < heapSize) { // 下方还有孩子的时候
// 两个孩子中,谁的值大,把下标给largest
// 1)只有左孩子,left -> largest
// 2) 同时有左孩子和右孩子,右孩子的值<= 左孩子的值,left -> largest
// 3) 同时有左孩子和右孩子并且右孩子的值> 左孩子的值, right -> largest
int largest = left+1 < heapSize && arr[left+1]> arr[left] ? left+1 : left;
// 父和较大的孩子之间,谁的值大,把下标给largest
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index)
break;
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
public static void swap(int[] arr, int i, int j) {
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
public static void main(String[] args) {
int[] arr1 = {9,8,7,6,5,4,3,2,1};
heapSort(arr1);
printArray(arr1);
}

15、手写单例

public class Singleton {
private volatile static Singleton singleton;
private Singleton() {}
public static Singleton getSingleton() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}
}

16、手写LRUcache

// 基于linkedHashMap
public class LRUCache {
private LinkedHashMap<Integer,Integer> cache;
private int capacity;   //容量大小
public LRUCache(int capacity) {
cache = new LinkedHashMap<>(capacity);
this.capacity = capacity;
}
public int get(int key) {
//缓存中不存在此key,直接返回
if(!cache.containsKey(key)) {
return -1;
}
int res = cache.get(key);
cache.remove(key);   //先从链表中删除
cache.put(key,res);  //再把该节点放到链表末尾处
return res;
}
public void put(int key,int value) {
if(cache.containsKey(key)) {
cache.remove(key); //已经存在,在当前链表移除
}
if(capacity == cache.size()) {
//cache已满,删除链表头位置
Set<Integer> keySet = cache.keySet();
Iterator<Integer> iterator = keySet.iterator();
cache.remove(iterator.next());
}
cache.put(key,value);  //插入到链表末尾
}
}
//手写双向链表
class LRUCache {
class DNode {
DNode prev;
DNode next;
int val;
int key;
}
Map<Integer, DNode> map = new HashMap<>();
DNode head, tail;
int cap;
public LRUCache(int capacity) {
head = new DNode();
tail = new DNode();
head.next = tail;
tail.prev = head;
cap = capacity;
}
public int get(int key) {
if (map.containsKey(key)) {
DNode node = map.get(key);
removeNode(node);
addToHead(node);
return node.val;
} else {
return -1;
}
}
public void put(int key, int value) {
if (map.containsKey(key)) {
DNode node = map.get(key);
node.val = value;
removeNode(node);
addToHead(node);
} else {
DNode newNode = new DNode();
newNode.val = value;
newNode.key = key;
addToHead(newNode);
map.put(key, newNode);
if (map.size() > cap) {
map.remove(tail.prev.key);
removeNode(tail.prev);
}
}
}
public void removeNode(DNode node) {
DNode prevNode = node.prev;
DNode nextNode = node.next;
prevNode.next = nextNode;
nextNode.prev = prevNode;
}
public void addToHead(DNode node) {
DNode firstNode = head.next;
head.next = node;
node.prev = head;
node.next = firstNode;
firstNode.prev = node;
}
}

17、手写线程池

package com.concurrent.pool;
import java.util.HashSet;
import java.util.Set;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
public class MySelfThreadPool {
//默认线程池中的线程的数量
private static final int WORK_NUM = 5;
//默认处理任务的数量
private static final int TASK_NUM = 100;
private int workNum;//线程数量
private int taskNum;//任务数量
private final Set<WorkThread> workThreads;//保存线程的集合
private final BlockingQueue<Runnable> taskQueue;//阻塞有序队列存放任务
public MySelfThreadPool() {
this(WORK_NUM, TASK_NUM);
}
public MySelfThreadPool(int workNum, int taskNum) {
if (workNum <= 0) workNum = WORK_NUM;
if (taskNum <= 0) taskNum = TASK_NUM;
taskQueue = new ArrayBlockingQueue<>(taskNum);
this.workNum = workNum;
this.taskNum = taskNum;
workThreads = new HashSet<>();
//启动一定数量的线程数,从队列中获取任务处理
for (int i=0;i<workNum;i++) {
WorkThread workThread = new WorkThread("thead_"+i);
workThread.start();
workThreads.add(workThread);
}
}
public void execute(Runnable task) {
try {
taskQueue.put(task);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void destroy() {
System.out.println("ready close thread pool...");
if (workThreads == null || workThreads.isEmpty()) return ;
for (WorkThread workThread : workThreads) {
workThread.stopWork();
workThread = null;//help gc
}
workThreads.clear();
}
private class WorkThread extends Thread{
public WorkThread(String name) {
super();
setName(name);
}
@Override
public void run() {
while (!interrupted()) {
try {
Runnable runnable = taskQueue.take();//获取任务
if (runnable !=null) {
System.out.println(getName()+" readyexecute:"+runnable.toString());
runnable.run();//执行任务
}
runnable = null;//help gc
} catch (Exception e) {
interrupt();
e.printStackTrace();
}
}
}
public void stopWork() {
interrupt();
}
}
}

package com.concurrent.pool;

public class TestMySelfThreadPool {
private static final int TASK_NUM = 50;//任务的个数
public static void main(String args) {
MySelfThreadPool myPool = new MySelfThreadPool(3,50);
for (int i=0;i<TASK_NUM;i++) {
myPool.execute(new MyTask(“task_”+i));
}
}
static class MyTask implements Runnable{
private String name;
public MyTask(String name) {
this.name = name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println(“task :”+name+" end…");
}
@Override
public String toString() {
// TODO Auto-generated method stub
return "name = "+name;
}
}
}

18、手写消费者生产者模式

public class Storage {
private static int MAX_VALUE = 100;
private List<Object> list = new ArrayList<>();
public void produce(int num) {
synchronized (list) {
while (list.size() + num > MAX_VALUE) {
System.out.println("暂时不能执行生产任务");
try {
list.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
for (int i = 0; i < num; i++) {
list.add(new Object());
}
System.out.println("已生产产品数"+num+" 仓库容量"+list.size());
list.notifyAll();
}
}

public void consume(int num) {
synchronized (list) {
while (list.size() < num) {
System.out.println(“暂时不能执行消费任务”);
try {
list.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
for (int i = 0; i < num; i++) {
list.remove(0);
}
System.out.println(“已消费产品数”+num+" 仓库容量" + list.size());
list.notifyAll();
}
}
}

public class Producer extends Thread {
private int num;
private Storage storage;
public Producer(Storage storage) {
this.storage = storage;
}
public void setNum(int num) {
this.num = num;
}
public void run() {
storage.produce(this.num);
}
}

public class Customer extends Thread {
private int num;
private Storage storage;
public Customer(Storage storage) {
this.storage = storage;
}
public void setNum(int num) {
this.num = num;
}
public void run() {
storage.consume(this.num);
}
}

public class Test {
public static void main(String args) {
Storage storage = new Storage();
Producer p1 = new Producer(storage);
Producer p2 = new Producer(storage);
Producer p3 = new Producer(storage);
Producer p4 = new Producer(storage);
Customer c1 = new Customer(storage);
Customer c2 = new Customer(storage);
Customer c3 = new Customer(storage);
p1.setNum(10);
p2.setNum(20);
p3.setNum(80);
c1.setNum(50);
c2.setNum(20);
c3.setNum(20);
c1.start();
c2.start();
c3.start();
p1.start();
p2.start();
p3.start();
}
}

19、手写阻塞队列

public class blockQueue {
private List<Integer> container = new ArrayList<>();
private volatile int size;
private volatile int capacity;
private Lock lock = new ReentrantLock();
private final Condition isNull = lock.newCondition();
private final Condition isFull = lock.newCondition();
blockQueue(int capacity) {
this.capacity = capacity;
}
public void add(int data) {
try {
lock.lock();
try {
while (size >= capacity) {
System.out.println("阻塞队列满了");
isFull.await();
}
} catch (Exception e) {
isFull.signal();
e.printStackTrace();
}
++size;
container.add(data);
isNull.signal();
} finally {
lock.unlock();
}
}
public int take() {
try {
lock.lock();
try {
while (size == 0) {
System.out.println("阻塞队列空了");
isNull.await();
}
} catch (Exception e) {
isNull.signal();
e.printStackTrace();
}
--size;
int res = container.get(0);
container.remove(0);
isFull.signal();
return res;
} finally {
lock.unlock();
}
}
}

public static void main(String args) {
AxinBlockQueue queue = new AxinBlockQueue(5);
Thread t1 = new Thread(() -> {
for (int i = 0; i < 100; i++) {
queue.add(i);
System.out.println(“塞入” + i);
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
Thread t2 = new Thread(() -> {
for (; ; ) {
System.out.println(“消费”+queue.take());
try {
Thread.sleep(800);
} catch (InterruptedException e) {
e.printStackTrace();
}
}

});
t1.start();
t2.start();
}

20、手写多线程交替打印ABC

package com.demo.test;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
public class syncPrinter implements Runnable{
// 打印次数
private static final int PRINT_COUNT = 10;
private final ReentrantLock reentrantLock;
private final Condition thisCondtion;
private final Condition nextCondtion;
private final char printChar;
public syncPrinter(ReentrantLock reentrantLock, Condition thisCondtion, Condition nextCondition, char printChar) {
this.reentrantLock = reentrantLock;
this.nextCondtion = nextCondition;
this.thisCondtion = thisCondtion;
this.printChar = printChar;
}
@Override
public void run() {
// 获取打印锁 进入临界区
reentrantLock.lock();
try {
// 连续打印PRINT_COUNT次
for (int i = 0; i < PRINT_COUNT; i++) {
//打印字符
System.out.print(printChar);
// 使用nextCondition唤醒下一个线程
// 因为只有一个线程在等待,所以signal或者signalAll都可以
nextCondtion.signal();
// 不是最后一次则通过thisCondtion等待被唤醒
// 必须要加判断,不然虽然能够打印10次,但10次后就会直接死锁
if (i < PRINT_COUNT - 1) {
try {
// 本线程让出锁并等待唤醒
thisCondtion.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
} finally {
reentrantLock.unlock();
}
}

public static void main(String args) throws InterruptedException {
ReentrantLock lock = new ReentrantLock();
Condition conditionA = lock.newCondition();
Condition conditionB = lock.newCondition();
Condition conditionC = lock.newCondition();
Thread printA = new Thread(new syncPrinter(lock, conditionA, conditionB,‘A’));
Thread printB = new Thread(new syncPrinter(lock, conditionB, conditionC,‘B’));
Thread printC = new Thread(new syncPrinter(lock, conditionC, conditionA,‘C’));
printA.start();
Thread.sleep(100);
printB.start();
Thread.sleep(100);
printC.start();
}
}

21、交替打印FooBar

//手太阴肺经 BLOCKING Queue
public class FooBar {
private int n;
private BlockingQueue<Integer> bar = new LinkedBlockingQueue<>(1);
private BlockingQueue<Integer> foo = new LinkedBlockingQueue<>(1);
public FooBar(int n) {
this.n = n;
}
public void foo(Runnable printFoo) throws InterruptedException {
for (int i = 0; i < n; i++) {
foo.put(i);
printFoo.run();
bar.put(i);
}
}
public void bar(Runnable printBar) throws InterruptedException {
for (int i = 0; i < n; i++) {
bar.take();
printBar.run();
foo.take();
}
}
}

//手阳明大肠经CyclicBarrier 控制先后
class FooBar6 {
private int n;
public FooBar6(int n) {
this.n = n;
}
CyclicBarrier cb = new CyclicBarrier(2);
volatile boolean fin = true;
public void foo(Runnable printFoo) throws InterruptedException {
for (int i = 0; i < n; i++) {
while(!fin);
printFoo.run();
fin = false;
try {
cb.await();
} catch (BrokenBarrierException e) {}
}
}
public void bar(Runnable printBar) throws InterruptedException {
for (int i = 0; i < n; i++) {
try {
cb.await();
} catch (BrokenBarrierException e) {}
printBar.run();
fin = true;
}
}
}

//手少阴心经 自旋 + 让出CPU
class FooBar5 {
private int n;

public FooBar5(int n) {
this.n = n;
}
volatile boolean permitFoo = true;
public void foo(Runnable printFoo) throws InterruptedException {
for (int i = 0; i < n; ) {
if(permitFoo) {
printFoo.run();
i++;
permitFoo = false;
}else{
Thread.yield();
}
}
}
public void bar(Runnable printBar) throws InterruptedException {
for (int i = 0; i < n; ) {
if(!permitFoo) {
printBar.run();
i++;
permitFoo = true;
}else{
Thread.yield();
}
}
}
}

//手少阳三焦经 可重入锁 + Condition
class FooBar4 {
private int n;

public FooBar4(int n) {
this.n = n;
}
Lock lock = new ReentrantLock(true);
private final Condition foo = lock.newCondition();
volatile boolean flag = true;
public void foo(Runnable printFoo) throws InterruptedException {
for (int i = 0; i < n; i++) {
lock.lock();
try {
while(!flag) {
foo.await();
}
printFoo.run();
flag = false;
foo.signal();
}finally {
lock.unlock();
}
}
}

public void bar(Runnable printBar) throws InterruptedException {
for (int i = 0; i < n;i++) {
lock.lock();
try {
while(flag) {
foo.await();
}
printBar.run();
flag = true;
foo.signal();
}finally {
lock.unlock();
}
}
}
}

//手厥阴心包经 synchronized + 标志位 + 唤醒
class FooBar3 {
private int n;
// 标志位,控制执行顺序,true执行printFoo,false执行printBar
private volatile boolean type = true;
private final Object foo= new Object(); // 锁标志

public FooBar3(int n) {
this.n = n;
}
public void foo(Runnable printFoo) throws InterruptedException {
for (int i = 0; i < n; i++) {
synchronized (foo) {
while(!type){
foo.wait();
}
printFoo.run();
type = false;
foo.notifyAll();
}
}
}

public void bar(Runnable printBar) throws InterruptedException {
for (int i = 0; i < n; i++) {
synchronized (foo) {
while(type){
foo.wait();
}
printBar.run();
type = true;
foo.notifyAll();
}
}
}
}

//手太阳小肠经 信号量 适合控制顺序
class FooBar2 {
private int n;
private Semaphore foo = new Semaphore(1);
private Semaphore bar = new Semaphore(0);
public FooBar2(int n) {
this.n = n;
}

public void foo(Runnable printFoo) throws InterruptedException {
for (int i = 0; i < n; i++) {
foo.acquire();
printFoo.run();
bar.release();
}
}
public void bar(Runnable printBar) throws InterruptedException {
for (int i = 0; i < n; i++) {
bar.acquire();
printBar.run();
foo.release();
}
}
}

【这些年背过的面试题】系列文章欢迎点击阅读原文查看合集!

**散列表:**适合集合类型存储,但数据量过大会消耗大量内存,仅适用于小数据集。

**布隆过滤器:**通过多个哈希函数把元素映射成一个很长的位数组,通过判断位数组对应的位置是否为1来判断元素是否存在于集合中。优势在于占用空间小,查询效率高。

Memcached+Mysql

统计大文件中的出现次数最快的方法。

使用数据库。

在写入评论时,记录下该评论所属的热门程度,热度越高的评论,迁移进缓存的层级越高。在读取评论时,优先从缓存中读取热门评论。

使用哈希函数,将短链接服务器域名与放号器的值进行哈希运算

**读写分离:**使用主从复制,将读操作分配到从库,避免影响写操作的性能。

**热点评论定时加载到缓存:**将访问量大的评论提前加载到缓存中,提高访问速度。

**利用放号器:**递增放号器值,用于生成短链接。

**连接域名和放号器值:**将短链接服务器域名与放号器的62进制值进行字符串连接,即可得到短链接的URL。

**重定向过程:**将短链接与长链接的映射关系存储在K-V存储中,浏览器访问短链接时,根据URL Path取到原始链接,然后进行302重定向。